

Idaho National Engineering and Environmental Laboratory

SAPHIRE Use at NASA

Marty Sattison

April 10, 2003

Systems Analysis Programs for Hands-on Integrated Reliability Evaluations

What Does SAPHIRE Do?

- Tool for Creating/Processing Boolean Logic Models of Complex Systems to Estimate Reliability or Risk
 - Event Trees
 - Fault Trees
- Determine Frequencies of Accident Scenarios
- Identify Vulnerabilities in Design/Operation

Event Trees and Fault Trees

NASA Use of SAPHIRE

 Galileo and Cassini Space Missions – Evaluation of Risk from Nuclear Payloads

International Space Station Probabilistic Risk Assessment (PRA)

Space Shuttle PRA

Columbia Accident Investigation

- Accident Scenario: Feb 1, 2003 Day 32
 - 6:44am MST Re-Entry Interface, 400K ft, Mach 24.57
 - 6:49:32 Initial Roll, Mach 24.51
 - 6:50:00 5 Events of Unexpected Comms Drop-out
 - 6:50:53 Start of Peak Heating
 - 6:51:19 Remote Sensors Indicate First Off-Normal Event (236.8K ft, Mach 23.6)
 - 6:51:46 Inertial Sideslip Goes and Stays Negative Until LOS
 - 6:52:17 Start of Off-normal Temp Trend on Brake Line in Wheel Well
 - 6:53:44 First Report of Debris Leaving Orbiter
 - 6:54:07 Fifth Report of Debris Leaving Orbiter
 - 6:54:35 Large Bright Flash Noticeable Luminescence in Plasma Trail
 - 6:55:32 Crossing Nevada/Utah Border, 223.4K ft, Mach 21.8

Columbia Accident Investigation

- Accident Scenario: Continued
 - 6:55:45 12th Report of Debris, Preceded and Followed by 2nd Plasma Trail
 - 6:56:16 Rapid Temp Rises in Wheel Well Temp Instruments
 - 6:56:24 First Indication of Instrument Damage Wing Skin Temp Goes Off-Scale Low
 - 6:56:30 Roll Reversal Initiated, 219K ft, Mach 20.9
 - 6:56:55 Roll Reversal Completed, Mach 20.76
 - 6:57:53-59 2 Flares of Orbiter Shape Observed Over NM
 - 6:58:03 Start of "Sharp" Aileron Increase Roll and Yaw Increases
 - 6:58:20 Altitude 209.8K ft, Mach 19.5, Crossing NM/TX Border
 - 6:59:32 Loss of Signal, Nothing More Heard From Columbia
 - Working: APUs, MPS, Fuel Cells, ME's, ECCLS, Body Flap, Right Wing
 - Failed: All Hydraulics, Left Elevon, Left OMS
 - 7:00:21 Main Body Breakup

CAI Support

- Johnson Space Center Staff Organizes
- Investigation Team Consists of:
 - Mission Evaluation Room & Support Team (Engineers)
 - Risk Analysts
 - Contractor Support (Boeing, Thiokol, etc.)
- Shuttle PRA Lead Named Head Modeler
- INEEL Called In to Support Modeling Efforts

CAI Master Logic Diagram

- MLD Provides Roadmap and Tracking System for Investigation Activities
- Top Event: LOCV During Entry Due to Aerodynamic Breakup
- Next Level: Structural Failures & Improper Attitude Control

War Room Display

MLD Levels 1 - 3

MLD & Work Breakdown Structure

- Every Element of MLD Given a WBS Number
- Top Levels Given Distinct Names:
 - LOCV
 - *SF*
 - SFOML
 - » SFOML-WING
 - » SFOML-CABIN
 - SFSM
 - AC
 - -ACCF
 - ACEF

Left Wing Temperature Measurements PRELIMINARY – UNDER REVISION

OEX Recorder, Top Cover Removed

4/1/03

CAIB Group 3

Concentrated on Left Wing

Reinforced Carbon Carbon - Pinholes

Typical Pinholes - First Discovered on OV-102-12 in 1992

Typical RCC Configuration

Type A Sealant- "Help Protect the Carbon"

Silicon Carbide Coating – "Protect the Carbon"

Carbon-Carbon Substrate – "Carry the Load"

Reinforced Carbon Carbon - Pinholes

- Pinholes first discovered on OV-102 after 12 flights in 1992
- Pinholes found on all orbiters
- Pinholes increased with flight exposure
 - Total as high as 20 to 40 per panel over time
- Potential root cause of pinholes :
 - Zinc leached out of Rotating Service Structure paint primer
 - Pad Topcoat not refurbished—more primer exposed
 - Rain washes zinc oxide onto Orbiter
 - Zinc combined with Silicon and Oxygen during re-entry to form pinholes

Launch Pad – Potential Zinc Source

